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Talk Summary
• Energy Transitioning

• Smart Energy Grids for Marine and Waterfront Applications

• Resilient Interconnected Infrastructures

• Fast Charging for Marine and Waterfront Applications

• Nuclear-Renewable Hybrid Energy Systems for Marine and Waterfront 
Applications

• Smart Energy Networks
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Energy Transitioning
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Wind Mill
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Current & Future 
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Geographical Area 
using LCA/LCC Index

Nuclear Power Plants
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Production/Supply Chain
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…
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Risks / Environmental 
Impacts.
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Energy Conversion Technologies
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Smart Energy Grid Superstructure
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Interconnected Micro Energy Grids
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Micro GridMEG Demonstration 
at UOIT
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Energy Supply
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Performance Modeling

• Quality
• Reliability
• Safety
• Security
• Resiliency
• Economy
• Technical
• Environmental
• Human Interface
• Social / Cultural
• Regulation Compliance

Steady State

Transient

Real Time

Seasonal

KPIs
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KPI Modeling
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• EWFHT (Generation / Storage / Loads)
• KPI Modeling

• Socio-cultural
• Economic
• Environmental
• Reliability / Safety / Security
• Technical
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• LOPA Definition: is to determine if there are  sufficient layers of protection 
against the consequences of an accident scenario (can the risk be tolerated?).

15



IE 1

IE 2
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IPL-Independent Protection LayersIRL-Independent Resiliency Layers
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Water Systems
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Energy Loads Coupling with Interconnected 
Infrastructures
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Interface Design for Interconnected Systems, Application 
on Energy-Water-Transportation Networks
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Integrated, Connected, and Autonomous Systems
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Regional Gas-Power MEG Planning

1. Regional Zone  2. Sub-regional Zone 3. Extra-regional Zone 
4. Cell   5. Interconnection  6. Interface

Region Cell Arrangement

http://www.cepa.com/wp-content/uploads/2011/06/oil-network-illustration.gif


Evaluation and Optimization of Interconnected Micro Energy 
Grids with Gas-Power, CHP, and Renewable Technologies

Energy flow schematic of interconnected-MEGs system

Structure of network with two MEGs
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 CHP system with optimal prime mover, it is 
found that:
 Return on investment of the system could be 

as high as 13% 
 Minimum payback period found is 7.8 years
 Maximum possible CO2 emission saving is 15%
 Maximum NOx savings found is 61% 
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Mobile Microgrid Trailer

23

2.4 kW Solar Array
Sides of array fold out for 
deployment. Dual-axis sun tracking 
can increase power production by 
40%.

8 kW Output Inverter 
& Electrical Components 
are proven and best-in-class.

90 kWhrs Battery Storage 
Lithium Ion. Tubular gel available.

Available small 
diesel or gas 
generator 
for redundancy.

Optional Turbine Tower 
lowered by actuators for 
transport.

Rugged aluminum purpose-built trailer 
R20 rated insulation, NEMA 4X enclosure equivalent.

Internet on-board for remote
monitoring & control. WiFi Hotspot 
available.



Multiple Resources 
and Multiple 
Products-based 
Coupling
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Fig: Multiple Resources and Multiple 
Products-based Coupling 

Fig: Energy Management Algorithm

iii)



Hybrid Energy 
System



Nuclear-Renewable Hybrid Energy 
System Simulator

In direct coupling method, 
electricity is generated from 
different RESs and reactors, and 
the resources simultaneously serve 
the electric and thermal 
requirements



• Renewable Energy and Energy Storage Systems

• Nuclear Power Technologies

• Nuclear-Renewable Hybrid Energy Systems

• Demand Side Management

• Micro Hybrid Energy Systems

• Techno-Economic Analysis

• Group Discussions and Individual Work

Deployments of Nuclear-Renewable Hybrid Energy Systems



Resilient Interconnected Micro Energy 
Grids for Sustainable Railways
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Typical Topology of an AC Railway Electrification



Resilient Interconnected Micro Energy 
Grids for Sustainable Railways
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Interconnected Micro Grids for Transportation 
Charging



Schematic of Hybrid AC-DC RIMG Including Power and Energy Sources





Integrated Control of 
Charging Station



Hybrid Charging Station
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Hybrid Charging Station
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EV Charging Models
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Charging of Toronto Bus Network



Electric Bus Charging On Route



Optimization of Route Charging

Route A Route B Route C
Number of Trips (per day) 7 14 16
Number of Stops (per trip) 70 80 75
Total Number of Stops (per day) 350 800 1200
Trip Length (km) 25 20 15
Bus Size (m) 18 24 24
Average Consumption (kWh/km) 1.8 2.2 2.2



Transportation Electrification Infrastructure
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CO2 Gas Emission by Different Types of Marine Ships in 
2012
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CO2 Emission (million tonnes)

Vehicle RO-RO Refrigerated bulk Other liquids tankers Oil Tankers

Liquefied gas tanker General Cargo Ferry-ROPax Ferry-pax only Cruise

Container Chemical tanker Bulk Carrier

CO2 Emission by Different Marine Ships in 2012
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CO2 Emission by Marine Ships
• CO2 emission from shipping has been increased by 2.4% from 2013 to 

2015
• CO2 emission was 910 million tons in 2013 but in 2015 it was 932 

million tons 

CO2 Emission from Marine Ship
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Projection of CO2 Emission by 2050

BAU projections of CO2 emissions from international maritime transport 2012–2050 [4]

45
BAU: Business As Usual



International Shipping and Environmental Impact
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Projection of CO2 Emissions from Marine Ships 

 IMO predicts that tonne-miles of goods 
moved globally will increase 2% to 4% 
annually between now and 2050.

 In 2007, international shipping accounted 
for 870 million MT of CO2 emissions and 
including domestic shipping it was around 
1050 million MT

At current rates of increase, shipping sector 
CO2 is expected to climb to between 2,500 
million MT and 3,650 million MT by 2050.

GHG emissions projection by marine ships
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Marine Ships Vs GHG Emissions

 If global shipping were a country, it would be considered as the sixth largest producer of GHG emission
Ocean-going shipping is responsible for more than 3% of global GHG emission
 Emission from ocean-going ships is almost twice the emission from total registered cars in US
 15 largest ships emit as much SOx as the worlds tot.al 760 million cars.

Third IMO GHG Study (million tonnes) ICCT (million tonnes)
Year 2008 2009 2010 2011 2012 2013 2014 2015
Global CO2 Emissions 32,133 31,822 33,661 34,726 34,968 35,672 36,084 36,062

CO2 Emissions from International Shipping 916 858 773 853 805 801 813 812

CO2 Emissions from Domestic Shipping 139 75 83 110 87 73 78 78

CO2 Emissions from Fishing 80 44 58 58 51 36 39 42
Total CO2 Emissions from Shipping 1,135 977 914 1,021 943 910 930 932

Total CO2 Emissions from Shipping (%) 4 3 3 3 3 3 3 3

Percentage of International Shipping to Total 
Shipping Emissions 81 88 85 84 85 88 87 87

GHG emissions by marine ships
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Fuel Efficiency and GHG Emissions with Marine
Marine ships are considered the 6th largest contributor to GHG emissions due to the use of conventional fossil fuel as 
energy supply.

49



Power and Weight Capacity of Marine Units

Marine unit Size Weight(kg) Required power 
capacity (~hp)

Cargo ships medium 25000 1378

Cruise 4000 passengers 20000 1102

Ferry Medium 8000 441

Boat 6 persons 2100 115

50



Ship Parameters and Voyage Route
SL. 
NO

SHIP DESCRIPTION

1
Ship's name (IMO 

number)
Baltic Sunrise (9307633 )

2
Date delivered / Builder 

(where built)

Nov 08, 2005 / Hyundai Heavy 
Industries Co. Ltd., Ulsan Shipyard, 

Korea
3 Flag / Port of Registry Marshall Islands / Majuro
4 Call sign V7NP2 / 538006485
5 Type of ship Oil Tanker
6 Length overall (LOA) 333.12 m

7
Length between 

perpendiculars (LBP)
324.00 m

8 Extreme breadth (Beam) 60.04 m

9 Deadweight 309373 MT
10 Displacement 352410 MT

Fig: Route of ‘Baltic Sunrise’Table: Parameters of ‘Baltic Sunrise’
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Estimation of Ship Energy Demand
SL. 
No

Parameter/ Assumption Category Notation Value

1 Beam of the ship Parameter 60 m

2 Volume displacement of the ship Parameter 344649.08 m3

3 Draught of the ship Parameter 21.6 m

4 Extreme breadth (Beam) Parameter 60.04 m

5 Average draught of the ship Parameter 16.15 m

6 Length between perpendiculars Parameter 324 m

7 Gravitational acceleration Parameter g 9.81 m/s2

8 Seawater density at 300C temperature Parameter 1021.7 kg/m3

9 Seawater viscosity at 300C temperature Parameter 0.84931× 10-6 m3s-1

10 Average speed of the ship Parameter 11.94 kn or 6.1424 
ms-1

11 Incremental resistance coefficient due 
to surface roughness of ship

Assumption CA 0.0004

12 Maximum speed of the ship Parameter 17.9 kn or 9.2185 ms-

1 ;
Table: Parameters of ‘Baltic Sunrise’
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Ship Speed Vs Propulsive Energy Demand
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SMR, vSMR, MR/MMR

• SMR is a fourth-generation nuclear reactor having power equivalent 
to 300 MWe or less. 

• vSMR has power rating less than 15 Mwe. 
• Microreactor (MR/MMR) is typically ranges from 1 MWe to 50 MWe.
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Ship Name
Count

ry
Ship 
Type

Reacto
r Type

Power 
Output 
(MW)

Built Status
Decommissioni

ng Year

Savannah USA
Contain

er
PWR 80 1962

Not In 
Service

1977

Otto Hahn
Germa

ny
Ore 

Carrier
FDR 38 1968

Not In 
Service

1982

Mutsu Japan Cargo PWR 36 1972
Not In 
Service

1996

Vaygach Russia
Icebrea

ker
KLT-
40M

171 1989 In Service

Artika Russia
Icebrea

ker
PWR 342 1975

Not In 
Service

2008

Sevmorput Russia
Icebrea

ker
KLT-
40M

135 1988 In Service

Taimyr Russia
Icebrea

ker
KLT-
40M

171 1989 In Service

Sovetski Souz Russia
Icebrea

ker
OK-

900A
342 1989 In Service

Let Pobedy Russia
Icebrea

ker
OK-

900A
342 2007 In Service

Lenin Russia
Icebrea

ker
PWR 318 1989

Not In 
Service

2008

700 naval nuclear reactors and 200 of them are still in 
operation for military use 

Nuclear Powered Ship

Distribution of Nuclear Powered Ships

Nuclear Powered Ship (Non-Military)



Estimation of Ship Energy Demand
SL. 
No

Parameter/ Assumption Category Notation Value

1 Beam of the ship Parameter 60 m

2 Volume displacement of the ship Parameter 344649.08 m3

3 Draught of the ship Parameter 21.6 m

4 Extreme breadth (Beam) Parameter 60.04 m

5 Average draught of the ship Parameter 16.15 m

6 Length between perpendiculars Parameter 324 m

7 Gravitational acceleration Parameter g 9.81 m/s2

8 Seawater density at 300C temperature Parameter 1021.7 kg/m3

9 Seawater viscosity at 300C temperature Parameter 0.84931× 10-6 m3s-1

10 Average speed of the ship Parameter 11.94 kn or 6.1424 
ms-1

11 Incremental resistance coefficient due 
to surface roughness of ship

Assumption CA 0.0004

12 Maximum speed of the ship Parameter 17.9 kn or 9.2185 ms-

1 ;

Parameters of ‘Baltic Sunrise’
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Estimation of Energy Demand of Marine Ship for 
a Given Route

• Estimation of Ship Power

 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇= 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⋅
1
2
𝜌𝜌𝑐𝑐 ⋅ 𝑠𝑠𝑠𝑠 ⋅ 𝑣𝑣2

𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇       = Total bare hull resistance of ship
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇     = Total hull resistance of ship coefficient 
𝑠𝑠𝑠𝑠            = Ship surface wetted 
𝑣𝑣            = Speed of the ship
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Applications on Marine Ships with SMR

Cargo Module

Propulsion Module
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Implementation in Marine Ships

https://www.marinetraffic.com/en/ais/home/centerx:-12.0/centery:24.8/zoom:2

https://www.marinetraffic.com/en/ais/home/centerx:-12.0/centery:24.8/zoom:2


PV

WT

Grid

BT

FCSEMS

TEMS-T

DC/DC 
Converter-1

AC/DC 
Converter-2

AC/DC 
Converter-3

AC/DC
Converter-4

FCS-C1

FCS User 
Interface

RTCoS

FCS-C2

FCS-C3

BEMS-B

VEMS-V

Power Line

FCS-SC

UC

FW

TEMS-S

BEMS-S
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Charging 

Station Design



FCS Load Profile
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Hourly load profile of a typical fast charging station

The proposed FCS load profile includes 35% Level 1, 
35% Level 2, and 30% DC fast charging vehicles and 
the station can handle 1000 vehicles per day.
Source: https://afdc.energy.gov/stations/#/find/nearest 

https://afdc.energy.gov/stations/#/find/nearest


Calculate Daily Load at 
𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓

Calculate Daily Load at 
𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  for Charging EVs

Calculate Daily Load at 
𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  for Charging EBs

Calculate Daily Load at 
𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  for Charging ETs

Calculate Daily Load at 
𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  for Charging 𝐼𝐼𝐹𝐹𝑓𝑓 

Calculate Daily Load at 
𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  for Charging 𝑆𝑆𝑆𝑆𝑠𝑠 

Daily Load at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Total Daily Load for EVs + Total Daily 
Load for EBs + Total Daily Load for ETs + Total Daily Load for 
𝐼𝐼𝐹𝐹𝑓𝑓 + Total Daily Load for 𝑆𝑆𝑆𝑆𝑠𝑠 + Total Daily Load to Charge 

Swapped Batteries

Daily EVs Charging Load at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Daily Number of EVs 
Charged * Energy Charged per EV Trip

Daily EBs Charging Load at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Daily Number of EBs 
Charged * Energy Charged per EB Trip

Daily ETs Charging Load at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Daily Number of ETs 
Charged * Energy Charged per ET Trip

Daily 𝐼𝐼𝐹𝐹𝑓𝑓 Load at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Number of Charging IF loads * 
Energy Charged per Time

Daily 𝑆𝑆𝑆𝑆𝑓𝑓 Load at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Number of Charging SS loads * 
Energy Charged per Time

Framework to 
Calculate Total 
Daily Load at 

Hybrid Charging 
Station (HCS)

Total Daily Load to Charge 
Swapped Batteries at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓

Daily Load of Charging Swapped Batteries at 𝐻𝐻𝐹𝐹𝑆𝑆𝑓𝑓  = Total 
Daily Load of Swapped Batteries for EVs + Total Daily Load of 

Swapped Batteries for EBs + Total Daily Load of Swapped 
Batteries for ETs + Total Daily Load of Swapped Batteries from 

other HCSs

SS: Station location index
IF: Industrial facility location index
EB: Electric bus
EM: Electric marine
ET: Electric truck
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FCS Hybrid System
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Scenarios
• Scenario-1: Single on-route terminal charging station

• Scenario-2: Two on-route terminal charging stations

Terminal-1

Terminal-2

Terminal-1 Terminal-2

Terminal-1
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Energy Management System

67

Control 
system

MRAC



Tracking Performance and Stability
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(a)

(b)

(c)(a) Tracking performance, (b) step response, and (c) bode plot of MRAC system



MRAC with Mixed-Integer Linear Programming

69

The entire optimization issue may be stated as follows, taking into account the constraints and objective function established in 
the preceding sections:

minimize R

subject to binary variables

storage model

storage constraints

power balance

Step 1: Optimization Problem Formulation

Illustration of MRAC system with optimization strategy



MRAC with Mixed-Integer Linear Programming

70

The optimum input sequence for the prediction horizon Np is found by solving the MILP problem:

Step 2: Optimization Problem Solution

Step 3: Control Set-Points Execution

Although a whole series of Np future control signals is calculated, only uopt(0) is applied to the system, and the other optimum 
values in uopt(k) are omitted

Step 4: Shift the Prediction Horizon

The prediction horizon is shifted, and steps 1 – 3 are repeated to generate a new optimum sequence, uopt(k). All 
this is done by re-evaluating the system’s current state, re-calculating power electronic efficiencies, and then 
resolving a new optimization issue.



Simulation of EMS with Optimization
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(a) Simulink model of the proposed EMS (b) MATLAB function block for EMS

(a) (b)



Performance Analysis
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(a) (b)

(c)
Performance of the system with (a) conventional EMS (b) Proposed EMS (c) Power saving by the proposed EMS



Performance Analysis
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(a) Energy storage system SoC profile (b) cost of energy of the system

(a) (b)

The proposed system improves the utilization of the ESS and reduces the COE.



Performance Analysis
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: Charging profile of (a) electric vehicle (b) electric bus from the proposed fast charging station

(a) (b)

12 minutes to reach from 
20% to 80% of SoC 17 minutes to reach from 

20% to 80% of SoC
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Sensitivity Analysis - Electrical Power Requirement

670.69
758.15 877.61

1114.06
1218.10663.11

752.36
875.90

1096.63
1197.93

440.20
488.33

538.05

595.92
643.93

435.82
487.77

532.11

589.32
643.35

-20% -10% 0% +10% +20%

N
PC

 (m
ill

io
n 

$)

Rate of Change in Electrical Power

Case-01 Case-02 Case-03 Case-04

670.69 758.15 877.61 
1,114.06 1,218.10 

13.04% 15.76%
26.94% 9.34%

 -

 500.00

 1,000.00

 1,500.00

-20% -10% 0% +10% +20%

N
PC

 (m
ill

io
n 

$)

Rate of Change in Electrical Power

Rate of Change in NPC with Electrical Power 
(Case-01)

663.11 752.36 875.90 
1,096.63 1,197.93 

13.46% 16.42%
25.20% 9.24%

 -

 500.00

 1,000.00

 1,500.00

-20% -10% 0% +10% +20%

N
PC

 (m
ill

io
n 

$)

Rate of Change in Electrical Power

Rate of Change in NPC with Electrical Power 
(Case-02)

440.20 488.33 538.05 595.92 643.93 10.93% 10.18% 10.76% 8.06%

 -

 1,000.00

-20% -10% 0% +10% +20%

N
PC

 (m
ill

io
n 

$)

Rate of Change in Electrical Power

Rate of Change in NPC with Electrical Power 
(Case-03)

435.82 487.77 532.11 589.32 643.35 
11.92% 9.09% 10.75% 9.17%

 -
 200.00
 400.00
 600.00
 800.00

-20% -10% 0% +10% +20%N
PC

 (m
ill

io
n 

$)

Rate of Change in Electrical Power

Rate of Change in NPC with Electrical Power 
(Case-04)

Sensitivity Assessment of Electrical Power on NPC



Emergency 
Level

World

Country

State

City

Area

Vehicle

Human

Emergency 
Nature

Wind Storm

Snow Storm

Sand Storm

Rain Storm

Radiation

Pandemic

Infrastructure 
Destruction

Very High 
Temperature
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Temperature

Cyber Security
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Flood

Water
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Emergency 
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Road

Traffic

Trip

Charging Station

Vehicle

Human

Service Provider

Emergency Analysis for Fast Charging Infrastructure

Coupling 
with 

Energy



EV Charging Models

EV EV

EV EV

Wireless Charging

Wired Charging

Wireless Charging

Wireless Charging

EV EV

EV EV

Wireless Charging

Wired Charging

Wired Charging

Wired Charging

Charging 
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While Moving

Charging from 
Single EV

Charging from 
Multi EVs

Charge Single 
EV

Charge Multi 
EVs

Fast Charging

Regular 
Charging

AC Charging DC Charging



Charging Unit Power SystemCharging Load

WICR

WDCR

SBTR

CBTR

EV

EB

ET

EM

RD11

RD12

RD13

RD14

RD21

RD22

RD23

RD24

RD31

RD32

RD33

RD34

RL11

RL12

RL13

RL14

RL21

RL22

RL23

RL24

RL31

RL32

RL33

RL34

Energy Systems

RD41

RD42

RD43

RD44

RL41

RL42

RL43

RL44

Layers of Resiliency Analysis (LORA) of FCS

Resiliency Demand: RD
Resiliency Likelihood: RL

WICR:  Wireless Charing
WDCR: Wired Charging

SBTR: Swap BT
CBTR: Charge BT



RD1*

RD2* RD3
RL1* RL2* RL3*

RD4*
RL4*

TR*

Layers of Resiliency Analysis (LORA) of FCS

0.180.05

0.07 0.02 0.06
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Frequency of 
occurrence of “RD*”

Mitigated 
Resiliency 

Performance 
after layer-1

Mitigated 
Resiliency 

Performance 
after layer-2

Mitigated 
Resiliency 

Performance 
after layer-3

Mitigated 
Resiliency 

Performance 
after layer-4

RD: Resiliency Demand, RL: Resiliency Likelihood
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Charging Station EV2
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Emergency Index Analysis for Charging Station

EI: Emergency Index



EV1

Charging Station EV2
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Human1
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Human3

Trip1

Trip2
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Driver
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Performance Index Analysis for Charging Station

Passenger
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Road1
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Road
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PI: Performance Index



Charging Station 
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Vehicle Energy Management for Charging in Emergencies
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Charging Station 
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Vehicle Energy Management for Charging in Emergencies
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Distributed Optimization Model
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Energy-Water Coupling

Energy-Water Coupling Supply Strategy
Energy inputs into Water Grids Energy supply to water sources

Energy supply to water treatment
Energy supply to water storage
Energy supply to water transfer
Energy supply to water loads

Water inputs into Energy Grids Water supply to energy sources
Water supply to energy conversion
Water supply to energy storage
Water supply to energy transfer
Water supply to energy loads



Water-Energy Analysis Levels (Food-Health)

City-level
• Water and energy flows
• Climate changes and 

pollutions
• Urban nexus conceptual 

framework

Regional-level

• Water, energy and 
environment connections

• Policy decisions regarding
• Systematic model 

framework

National-level

• Water scarcity, climate 
change and environmental 
capacity

• Policy intervention 
institutional arrangement

• Integrated implementation 
framework

Transboundary-level

• Trade-offs of shared 
resources

• Institution coordination
• Benefits share 

frameworks



Energy-Water in Farms



Energy-Water Optimization

• Objective function = min (f1 + f2 + f3)
• where f1 is the cost of electric energy consumption, f2 is the cost of 

pump maintenance and f3 is the cost of demand charges. 

• 𝑓𝑓1 = ∑𝑓𝑓=1
𝑛𝑛𝑛𝑛 ∑𝑓𝑓=124 𝑃𝑃𝑓𝑓𝑓𝑓 ∗ 𝑐𝑐𝑔𝑔𝑗𝑗

• 𝑓𝑓2 =  𝑐𝑐𝑐𝑐 ∗ 𝑃𝑃𝑠𝑠𝑚𝑚𝑚𝑚

• 𝑓𝑓3 =  ∑𝑓𝑓=1
𝑛𝑛𝑛𝑛 𝑐𝑐𝑠𝑠 ∗ 𝑆𝑆𝑆𝑆𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖



Regional Water Network Model
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Ontario Daily Energy Tariff 
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Optimization Results

Pump #1 #2 #3 #4 #5 #6 #7

Power (kW) 595 445 260 260 595 740 330

Water Flow (m3/hr) 1800 1440 828 828 1800 2240 1000

Tank 1 2 3

Lower limit (m) 6.5 6.5 6

Upper limit (m) 9 8.5 9



Daily Power Consumption of Toronto Water 
Pump Stations
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Integrated Collaborative Simulation for Regional Planning 
and Optimization of Hydrogen Deployments Strategies

Collaborative 
Simulation

EXCEL

SWITCH

HOMER

Matlab

NR-HESS

User 
Interface

Manage H2 
Strategy

Manage H2 
Scenario

Manage H2 
Technology

Manage 
Infrastructure

Manage 
Transactive 

Energy

Manage KPI

Optimization

ChatGPT

Control

CSDB
ESN

TRANSYS



95

30%

70%

Case 
study 2: 
Starting 
to 
include 
fuel cell 
vehicles



Main KPIs
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Region KPIs

CO2 emissions (tons/year)

Operating costs ($/year)

Power demand 
(MWh/year)

Water demand (ML/year)

Zone KPIs

CO2 emissions (tons/year)

Operating costs ($/year)

Power demand 
(MWh/year)

Water demand (ML/year)

Power plants KPIs

CO2 emissions (tons/year)

Operating costs ($/year)

Generated power 
(MWh/year)

Capital costs ($)
Water plants KPIs

Operating costs ($/year)

Processed water 
(ML/year)

Hydrogen plant/s KPIs

Generated hydrogen 
(kg/year)

Operating costs ($/year)

Capital costs ($)



System architecture 
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Source code
Location: 

Github

Google collab:
• Easy start, installation of 2-

3 minutes
• Installation required on 

every use
• Information should be 

saved constantly in case 
collab limit is exceeded

Local:
• Initial installation is complex

• Installation required one 
time (except when there are 

code updates)
• Information storage is 

flexible

Two Installation options

Manually

From user interface (currently 
not implemented

Modifying input data

Manually

From user interface (currently 
not implemented

Interpreting output data

https://github.com/E
lenaVH/switch_E

Code is private: only 
accessible to our 
team

Must be updated every 
time new modules are 

developed/changed



Data preprocessing: Power
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Power separation proportional to population density

Population in Toronto, East and Essa areas vs population in Durham region: Select applicable FSAs, 



Digital Architecture for Transactive Mobility
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Integrated Energy-Water-Food-Health-Transportation Data 
Center (Efficiency, Conservation, Safety, Reliability)



AI for Smart Energy-Water-Food-Health-Transportation 
Infrastructures 
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Integrated Modeling & Simulation for Smart Energy-Water-Food-
Health-Transportation Grids Planning, Control, and Optimization
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The Resilient Design of the Microgrid



Real-time Co-simulation for Microgrid Applications



Lab 
Demonstration 

of Microgrid 
with FCS
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H2VPRO – Novel Hydrogen Generation Technology 
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• This patent is concerned with the ability to install a vertical axis turbine as a hydrokinetic turbine on both the board of maritime transports and 

shoreline infrastructures. The patent is establishing a new Savonius turbine with a vertical axis concept S shape water turbine (SSWT), which 

consists of a simple design with higher efficiency at low wind and water speeds than other turbines. In addition, this design presents a compact 

size, self-starting, ease of installation and maintenance, and independence concerning water flow direction.

Key Features & Summary Description of SSWT 
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https://www.eia.gov/energyexplained/hydropower/ocean-thermal-energy-conversion.php

The Conventional OTEC System



The Proposed OTEC System
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• IEEE SEGE: http://sege-
conference.com/index.html

• Smart Energy Grid Engineering Book: 
http://store.elsevier.com/Smart-Energy-
Grid-Engineering/Hossam-Gabbar/isbn-
9780128053430/ 
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ISBN: 978-3-031-09500-9 



114



LAdvanced Plasma Engineering 
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IEEE SEGE 2016 – UOIT, Sponsored by IEEE, 
Hydro OneThank You
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