

IEEE Technical Societies/Councils

Top-class technical expert base

- Aerospace & Electronic Systems
- Antennas & Propagation
- Broadcast Technology
- Circuits & Systems
- Communications
- Components, Packaging, & Manufacturing Technology
- Computer
- Computational Intelligence
- Consumer Electronics
- Control Systems
- Council on Electronic Design Automation
- Council on Superconductivity
- Dielectrics & Electrical Insulation
- Education
- Electromagnetic Compatibility
- Electron Devices
- Engineering in Medicine & Biology
- Geosciences & Remote Sensing
- Industrial Electronics
- Industry Applications
- Information Theory
- Intelligent Transportation Systems

- Instrumentation & Measurement
- Lasers & Electro-Optics
- Magnetics
- Microwave Theory & Techniques
- Nanotechnology Council
- Nuclear & Plasma Sciences
- Oceanic Engineering
- Power Electronics
- Power & Energy
- Product Safety Engineering
- Professional Communication
- Reliability
- Robotics & Automation
- Sensors Council
- Signal Processing
- Social Implications of Technology
- Solid-State Circuits
- Systems Council
- Systems, Man, & Cybernetics
- Technology Management Council
- Ultrasonics, Ferroelectrics, & Frequency Control
- Vehicular Technology

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

IEEE Standards

Span a broad spectrum of technologies

Examples:

- Aerospace Electronics
- Broadband Over Power Lines
- Broadcast Technology
- Clean Technology
- Cognitive Radio
- Design Automation
- Electromagnetic Compatibility
- Green Technology
- Ethernet/Wi-Fi
- Medical Device Communications

- Nanotechnology
- National Electrical Safety Code
- Organic Components
- Portable Battery Technology
- Power Electronics
- Power & Energy
- Radiation/Nuclear
- Reliability
- Transportation Technology
- Test Technology

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

EDA: Where Electronics Begins

- Software "tools" for chip design
 - Architecture design
 - Functional design and verification
 - Physical design and verification
 - Various logic, physical and electrical analyses

- Standards improve productivity
 - Tool interoperability
 - Data exchange, sharing, and consistency

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

As Technologies Evolve ...

Semiconductor Process: Microns→SubMicrons→Nanometer

Transistor/Gate Count: Thousands

ologies: Flat→Block Desig

penches→Envir Verif

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards A

IEEE Std #	Description
1076	VHDL
1149	JTAG (Test)
1364	Verilog HDL
1450	Standard Test Interface Language (STIL)
1481	Delay & Power Calculation System (DPCS)
1647	Functional Verification Language 'e'
1666	System C LRM
1685	IP-XACT
1734	Standard for Electronic Design Intellectual Property (IP) Quality
1735	IP Encryption and Rights Management
1800	System Verilog
1801	Unified Power Format (UPF)
1850	Property Specification Language (PSL)

SystemVerilog Journey

- Ratified as IEEE Std. 1800-2005
 - Started with SystemVerilog 3.1a from Accellera
 - Less than one year from transfer to ratification
 - More than 200 products support the standard
 - Rapid adoption across design and verification community
- Ratified as IEEE Std. 1800-2009
 - Verilog IEEE 1364 completely integrated
 - Large user community looking for design and verification productivity improvement
- Ratified as IEEE Std. 1800-2013 with more enhancements
- Free tutorial on IEEE Standards Education website

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

SystemVerilo

23

SystemVerilog Spawned an Entirely New Business Segment

- Enabled/accelerated IP (design blocks) market segment
 - One language to write complex design blocks
 - Same language to verify design blocks
 - Make IP once, sell many times
- Many IP providers for design and verification reuse
 - Networking, wireless, and consumer applications
- Verification IPs as much in demand as design IPs
 - New methodologies invented
 - UVM, Assertion based verification, testbench automation
- Clear inflection point in the industry to deal with large System-on-Chips

IEEE STANDARDS ASSOCIATION

◆IEEE

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

Case Study: IEEE 1801/UPF A Low-Power IC Standard

- Ever-growing need for low-power ICs in mobile/portable devices and data centers
- Industry recognized need for low-power IC standard
 - Common way for design and verification engineers to describe IC's low-power properties
- EDA users and vendors came together to develop a format and methodology
 - Effort started in 2006 under Accellera
 - Merged 6 technology donations for multi-faceted requirements
 - Unified Power Format (UPF) created in 6 months
- Ratified as IEEE Std. 1801-2009
 - Less than 18 months under entity process

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

25

Case Study: IEEE 1685 IP-XACT

- Meta-data about semiconductor IP
- Composing systems using/reusing IP consistent, complete
- Originally developed under The SPIRIT Consortium
- Ratified as SPIRIT standard in 2007 (version 1.0, 1.5)
- XML Schemas published
- IP-XACT 1.5 donated to IEEE P1685
- Ratified as IEEE Std. 1685-2010

IEEE STANDARDS ASSOCIATION

♦IEEE

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

Standards: Foundation for Research

- Describe new designs/architectures using existing standards
 - SystemVerilog, SystemC
- New algorithms for design optimization, transformation
 - SystemC → SystemVerilog
- New methodologies
 - Low power, System verification
- Power optimization with better testability
- 3D design, verification and test methods (new standards?)
- Analog/mixed-signal automation
- IP integration and validation
- Software development using virtual hardware

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

28

New Standards: Area for Research

- What makes a good EDA standard?
 - Language/format
 - API (Procedural Interface)
 - Open Source Implementation
 - More ...
- Application specific standards?
 - EDA for Automotive applications, Health Devices, ...
- Patents and IP Rights
- Make your research 'industry-relevant'
 - Demonstrate use through formal or de facto standards

IEEE STANDARDS ASSOCIATION

◆IEEE

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

Importance of Standards Education

- Standards education recognizes the key role standards play within the engineering, technology and computing fields.
- Knowledge of standards can help facilitate the transition from classroom to professional practice by aligning educational concepts with real-world applications.
- Incorporating standards into the curriculum ...
 - Benefits students and faculty mentors as they face challenging design processes
 - Provides tools for use in learning about standards and their impact on design and development
- Visit standardseducation.org
 - Grants for standards based projects

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

- - -

Summary

- EDA users and vendors have embraced IEEE standards for three decades.
- Large user community active in development of standards along with vendors.
- Standards help broaden infrastructure for the entire industry and academia.
- Education of EDA standards in engineering curriculum is highly significant.
- Standards based research accelerate innovation.

IEEE STANDARDS ASSOCIATION

PIEEE

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015

Thank you!

Speaker: Yatin Trivedi trivedi@synopsys.com ytrivedi@ieee.org

IEEE STANDARDS ASSOCIATION

Standards, Business and Career © 2015 IEEE Standards Association

Vienna, March 2015